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SUMMARY 

This paper presents a systematic and theoretically consistent approach for the analysis of free-surface flow, 
making use of a number of established ideas such as physical component, boundary-fitted co-ordinate (BFC) 
and Lagrangian front tracking. The approach extends, theoretically as well as numerically, the use of 
physical component to general non-orthogonal moving grids and provides a numerically stable BFC 
method with little labour of free-surface positioning, grid generation and grid renewal. The approach 
conserves mass even at the free surface and allows time step of the order of the Coulant number. The main 
body of the present paper starts with the definition of analytical space and Riemannian geometry intrinsic to 
the physical component by applying to it the theorems of differential geometry and manifold theory. Then 
the governing equations of flow and free surface for the physical component are defined in the general 3D 
form with the notation of the new Riemannian geometry.Numerica1 procedures and the fully discrete 
equations are also presented for the benefit of potential users. Finally, several 2D examples demonstrate the 
basic performance of the present method by showing the computability of complex free-surface motion. 

KEY WORDS Physical component Lie derivative Physical curvilinear space Riemannian geometry Lagrangian 
front tracking Free surface 

1. INTRODUCTION 

Free-surface flow is one of the common states of incompressible fluid, and its study is important 
for a deeper understanding of fluid physics. Since free-surface flow is often dynamic and exact 
experimental measurement of the flow and pressure is difficult, contribution of numerical method 
is important for the investigation and, for quantitative investigation, the method should be able to 
handle the movement of free surface as precisely as flow. From the viewpoint of numerical 
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analysis, free-surface flow is unique in the following two points. First, it is a problem of moving 
boundary. Second, movement of the boundary is not prescribed; free surface is a boundary 
coupled with flow and is to be obtained as a solution of analysis. The existing numerical methods 
for analysing free-surface flow are classified into two groups according to the method of 
free-surface tracking. One of them employs direct Lagrangian tracking with moving boundaries 
and the other employs indirect tracking with fixed grid system. In the latter method, the 
free-surface is determined by a distribution of volume of fluid (VOF)’ in each cell, but this method 
has setbacks of poor mass conservation, large numerical viscosity at the free surface and reduced 
time step lor the convergence of VOF value. Low reliability of free surface hurts even the 
reliability of flow. 

On the other hand, the analytical method with Lagrangian free-surface tracking requires 
flexible grids for analysis. Most of the numerical methods with Lagrangian free-surface tracking 
are based on one of the following numerical techniques: the finite element method (FEM),’ the 
boundary element method (BEM)3 and the boundary-fitted co-ordinate (BFC)4 method. Among 
them the BFC method is chosen in the present study because the well-developed techniques of the 
finite difference (FD) method are applicable and the analytical method can be formulated based 
on the strict mathematical tool of Riemannian geometry. One of the problem in applying the 
techniques of conventional FD method on the curved grid system of the BFC method is that there 
is a discrepancy between the direction of the local grids and that of the Euclidean rectangular 
co-ordinates with which the physical space is defined. In the BFC method formulated based on 
Riemannian geometry with contravariant or covariant vectors as variables, this problem is 
overcome by a mapping from the physical space to the curvilinear space of which grid system is 
regular and follows the direction of rectangular co-ordinates. In other words, shapes of the 
boundaries are deformed for the convenience of computation in this type of BFC method. But the 
mapping not only deforms boundaries but also transforms flow variables to their contravariant 
(or covariant) counterparts, and the transformation changes not only the direction of flow 
variables but also its magnitude to be inversely proportional to the scale factor of the mesh 
hi = Jgii. The change of direction is convenient to the analysis but the change of magnitude is not, 
since the scale factor varies cell to cell and this induces undesirable mesh sensitivities. This 
sensitivity, however, can be cancelled by the use of physical component. 

Physical component was first introduced by Truesdell’ as an attempt to give vectors and 
tensors the natural physical dimensions and immediate physical meanings that were lost by 
tensor transformation. He defined the physical component of contravariant vectors by multiply- 
ing with them the scale factors of the mesh hi=, /g i i .  He even derived the connection coefficients 
(Christoffel symbols) and covariant derivatives of physical components, but only for the case of 
orthogonal co-ordinates. If restricted to the orthogonal co-ordinates, these coefficients can be 
derived from their non-physical counterparts by a simple multiplication of scale factors. 

Then, researchers like Pope6 and Ryskin and Lea17v8 introduced physical component into the 
analysis of incompressible fluid flow that is bounded by complex boundaries. However, their 
principal purpose of the introduction was just the simplification of expression of governing 
equations and the resulting discretizations. They restricted the use of physical component to the 
orthogonal grids, and suffered inconveniences that complex boundaries distorted the whole inside 
mesh and changed the mesh sue by orders. They paid much effort on the generation of 
orthogonal grid systems, but little on the extension of physical component to the general 
non-orthogonal grids. 

Following these studies, Demirdzic et a1.’ made progress in the use of physical component. 
First, they used it to reduce undesirable mesh sensitivities. Second, they extended the use to 
general non-orthogonal grids. Although it had been long believed that the physical component is 
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useful only in the case of orthogonal co-ordinates, they released it from the restriction of 
orthogonality. 

also adopted physical component to the BFC method to promote 
numerical stability. They showed, theoretically as well as numerically, that only the physical 
component converges when the mesh size of the adjacent cells differs more than three timesL3 
They also clarified the geometrical meaning of the quantities of physical component and extended 
a number of differencing techniques of FD, such as the staggered arrangement and the MAC 
(marker and cell) algorithm, to the BFC method. 

Achievements of these two research groups provide numerically stable method to analyse the 
flow in complex boundaries using ‘sound’ grid systems, with little labour of mesh generation and 
relatively large time step. Their progress is also important for the analysis of free-surface flow; free 
surface is susceptible to numerical stability, control of mesh size in the moving boundary problem 
is often difficult, and movement of the whole inside mesh induced by the movement of free surface 
can hurt the reliability of the result computation. 

To extend the use of physical component BFC (PCBFC) method to the analysis of free surface 
flow, we need a new function for assessing the effects of grid movement on variables. Flow vectors 
suffer change not only by grid displacement but also by grid rotation, and each effect we are to 
assess in the curved co-ordinate system. This is a very complex process if we do not use the Lie 
derivative. The Lie derivative is a co-ordinate-free derivative along a curved line, and was first 
introduced into the fluid flow analysis by Ogawa and I~higuro . ’~  They analysed with the Lie 
derivative some incompressible flows bounded by prescribed moving boundaries using non- 
physical contravariant flow vectors as variables. To introduce the Lie derivative into the 
formulation with physical components as variables, we need a ‘physical component counterpart 
of the Lie derivative.’ However, contrary to the preceding works, a simple substitution of physical 
component into the formula of the Lie derivative written in the non-physical form does not work, 
since the Lie derivative Lyui requires the replacements of not only ui, the flow vectors, but also of 
V, the direction of movement, to their physical component counterparts. To obtain this derivative 
in the form of physical component, we must apply the theorems of Riemanian geometry from the 
beginning, and to apply these theorems the basic quantities of physical component such as 
metrics, connections and covariant derivatives should be reviewed first, not as physical compon- 
ent counterparts but as proper geometrical objects that belong to their own analytical space and 
Riemannian geometry. Differential geometry and manifold theory inform us that each set of 
tensor components has its own space and geometry. This paper provides a deeper insight into the 
significance of physical component, and is important in the analysis with fixed boundaries as well. 
The primitive concept of this paper has been presented by Takizawa and Kondo” in a local 
conference. 

The objective of the present paper is to provide a viable and theoretically consistent approach 
for the simulation of free-surface flow based on the development of a new analytical space and 
a new Riemannian geometry intrinsic to the physical component. We start with the development 
of mathematical foundation. In Section 2 we define a space, Riemannian geometry and derivat- 
ives that are intrinsic to the physical component. We also derive some useful relations of the 
connection coefficients based on the characters of the space of physical component in this section. 
In Section 3 we formulate the governing equations of free surface flow in the general 3D form with 
the notation of the Riemannian geometry. In Section 4 we discuss about the differencing 
techniques, the computational algorithm and the initial and boundary conditions in detail. In 
Section 5 we show some numerical examples. Although the formulation is carried out in the 
general 3D form, examples shown in this section are performed in 2D because the principal 
objective of the present paper is the theoretical development and demonstration of the basic 
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performance. We will analyse three different bench-mark problems of flow in a cacity: (1) period- 
ical free-surface motion induced by external excitation, (2) free-surface motion induced by forced 
circulation, and (3) complex free-surface motion induced by a superposition of external excitation 
and forced circulation. A summary of differential geometry and manifold theory used in the main 
body of the present paper is given in the Appendix. 

2. MATHEMATICAL FOUNDATION 

In this section we lay down the mathematical foundation of the PCBFC method in the general 3D 
form through the introduction of analytical space and Riemannian geometry of the physical 
component (RGPC). Throughout this paper, equations are described with index notation and the 
summation convention of tensor calculus. A Roman letter index is an index of 3-space ( i =  1-3), 
t is an index of time (t=4) and a Greek letter is an index of 4-spacetime ( I =  1-4). An index in 
parentheses denotes physical component. 

2.1. Space of physical component 

ContravariaGt unit tangents of the curvilinear space are defined as follows: 

where <', Jgii and Sj are the co-ordinate of curvilinear space, scale factor of the mesh and the 
Kronecker delta, respectively, and suffix [ j] denotes the jth component. Physical component of 
the contravariant vector ui is defined as follows: 

u(')= J(Sii)U'. (2) 

Although the standard textbooks of tensor calculus'6 state that the physical components do not 
transform as tensors, they do if we introduce a new space { < ( i ) }  by modifying the contravariant 
unit tangents of equation ( 1 )  in the following way: 

Equations (1)-(3) give the following relation on u(') and ui. 

This equation indicates that the physical components are tensors of a space defined by the 
co-ordinates {<( i ) } .  

The co-ordinates {<(')} are curvilinear just as the co-ordinates {ti}, but the lengths of the unit 
tangents are all unity, which indicates that the space defined by {t(i)} is identical to the physical 
space. We call this space 'physical curvilinear space (PCS). The PCS is illustrated in Figure 1 
along with other spaces. Different from the curvilinear space, the discrepancy between the 
direction of grids and that of the co-ordinates (see Section 1) is overcome by the deformation of 
the co-ordinates, and there is no deformation of flow boundaries by a mapping from the physical 
space to the PCS. It can be said that the physical component is less sensitive to the analytical 
mesh size because the space of analysis suffers no deformation by the mapping. 
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Figure 1. Analytical spaces and the co-ordinates used in the BFC method: (a)physical space; (b)curvilinear space; 
(c) physical curvilinear space 

2.2. Riemannian geometry of physical component 

Now that the PCS has been defined, we can derive the RGPC by applying the theorems of 
differential geometry and manifold theory (see the Appendix) to the PCS. Jacobian, metrics and 
connection coefficients are the important geometrical quantities in the PCBFC method, corres- 
ponding to the element of cell volume, unit length, and the curvatures of the co-ordinates, 
respectively. These quantities are obtained from the transformation matrix of the mapping from 
the PCS to the physical space defined as follows: 

T = ~ T ; ) l = ( ~ ) = i x ~ i i i = i c o s  eji], (5 )  

where {xi}, x:~,, 7';) and Bj i  denote the co-ordinate of physical space, partial derivative of x j  with 
respect to ("), members of the transformation matrix T, and the angle formed by the <(i) axis and 
the x j  axis, respectively. Jacobian is a determinant of T: 

J=ITI. (6) 
Metrics are obtained by substituting T& in equation (5) and the trivial metrics of physical space 

given in equation (58) into equation (56) and are given as follows: 

g(-  11) = 1, g ( i j )  = cos ai j ,  (7) 

where ctij is the angle formed by 5") and < ( j )  axes. In other words metrics are the inner products of 
the unit tangents of PCS. 

Connection coefficients of the PCS are obtained by substituting 7';) of equation ( 5 )  and the 
trivial connections of physical space of equation (67) into equation (62). For example, r$\) is 
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where x f j i )  denotes a( i , (a( j )x) .  In general, r& can be obtained as a determinant of T whose 
members in the ith column are replaced with { x ( k j ) ,  Y ( k j ) ,  z ( ~ ~ ) } ,  to be divided by J. Higher-order 
differentials in the PCS depend on the order of differentiation (uncommutative), as indicated by 
the following inequality: 

From this inequality, we can obtain another inequality concerning the connection coefficients: 

rlyk) + r&. (10) 

This inequality indicates that the PCS has non-zero torsion (see Section A.6). In a strict sense, this 
inequality excludes the RGPC from Riemannian geometry, but we call it 'Riemannian geometry' 
by slightly extending the definition. 

2.3. Derivatives of physical component 

There are two co-ordinate-free derivatives used in the PCBFC method; covariant derivatives 
and Lie derivatives. Covariant derivative is a co-ordinate-free partial derivative (see Section A.2). 
Covariant derivative of di) with respect to 5") is defined as follows: 

where the second term on the right-hand side of the equation serves for the correction of direction 
change of the curved PCS co-ordinates. Covariant derivative of a scalar p is defined as follows: 

where there is no correction term because scalar has no directional element. 
Lie derivative is a co-ordinate-free total derivative. Standard textbooks of differential 

geometry"*'* inform that the Lie derivative of di )  in the direction of Vis expanded as follows (see 
Section A.4): 

(12a) LVUW= @v ( j )  u(i)-u(j)v(j) VW. 

The first term on the right-hand side of equation (12a) represents the effect of grid displacement, 
while the second term represents the effect of grid rotation. The Lie derivative of p is written as 
follows: 

where there is no rotation term because scalar has no directional element. 
Although equation (12a) is written with physical components, the rotation coefficients V, j ,  

may have non-zero values even when the grid moves in parallel. This mesh sensitivity is 
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outstanding especially when the mesh movement changes the intervals of mesh; so, this sensitivity 
is similar to that occurring in the non-physicals, referred to in Section 1. To have a numerically 
stable free surface, we should improve equation (12a) to fit the physical component, and for the 
improvement we need to grasp the PCS as an entity of 4-spacetime instead of a combination of 
3-space and time. In the 4-spacetime, the time axis is normal to the 3-space so that it keeps the 
meaning of 'global time' and reqiiires no modification of the formulae of 3-space obtained so far. 

The improvement starts with an expression of evolution equation in the physical space. Given 
an evolution function f; the evolution of the system is described as follows: 

In the 4-spacetime, equation (13) is writtcn as follows: 

V,u(i)=f(u"), v ( j )u( i ) ,  p ) ,  

where V, is a covariant derivative with respect to time. The above equation can be expanded as 
fOllOWS: 

The above equation advances time without moving the point of definition because the time axis is 
normal to the 3-space and the advancement along the time axis does not change the point of 
definition even when there is a grid displacement. So, to adjust the point of definition, we need to 
add one more term VVu(') that assesses the change of di)  caused by a parallel displacement in the 
direction of V, and this derivative is expanded as follows: 

(14) vyu(i)= v(j)v 
( j )  

Then the evolution equation in the PCS is obtained in the following form: 

A comparison of equations (13) and (15) indicates that the last two terms on the right-hand side of 
equation (15) serve as the Lie derivative. We have, therefore, obtained an improved mesh- 
insensitive Lie derivative for the PCBFC method, written as follows: 

Lyu(i)  = v(j)v . uti) - l-(i! uti) .  ( 12c) 

Time connection coefficients r:yk) in equation (12c) can be obtained in the same manner as the 
space connection coefficients in equation (8). For example, r:;i) is given in the following form: 

( I )  ( t J  ) 

2.4 Relations of the connection coeflcients 

The characters of the PCS give some relations of the connection coefficients. First, the space 
co-ordinates of the PCS have foliated  structure^'^ (see Section A.7). A small circuit drawn along 
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the co-ordinates on a certain leaf of the PCS remains in that leaf. This indicates that the element 
of the torsion tensor of PCS that stands out of the leaf vanishes: 

T$)=~$~) - r ' $ )=O (if i # j # k # i ) .  (17) 
The above equation immediately gives the following relation of the connection coefficients: 

r;;i) = r& (if i + j  # k z i) (18) 
Equation (18) overrides equation (10). The time axis is not foliated and equation like equation (18) 
never holds, but the following relations hold since the time axis is normal to the 3-space: 

r$) = 0, r;& = 0. (19) 

v ( k ) g ( i j )  =o* (20) 

Second, connections of the PCS are metrical (see Section AS), i.e. 

The above equation is written explicitly as follows: 

d ( k ) g ( i j )  - r & g ( r j )  - r:!!i)g(ir) =o* 
Taking the case of i = j  and using equation (7), the above equation reduces to the following form: 

g(ir)rI;)=o, 
or: more explicitly, using equation (7) again, it is written as follows: 

cos airr$)=0. 

The above equation can be evolved, for example, in the following form: 

r;f;,= -COS a12rljz!)-cos aI3r$, .  (21a) 
Equation (65) indicates that { r&]  (i= 1-3) are the curvature vectors of t ' j )  axis when moved 
along the (!k) axis. Since curvature vector of a curve is normal to the tangent of the curve, 

(i = k) vanishes if the local co-ordinates are orthogonal. But as the co-ordinates are oblique, 

The same relation holds in the time connection coefficients. For example, the following 
TCjk)  V) ( i = k )  gains component by decomposition as described in Equation (21a). 

equation holds: 

( 2 W  r(tll- (1) - -COS a12r;:/)-cos a13r:;:). 

Relation like equation (21 b) never holds in the imperfect rotation coefficients expressed by 
V ( j ,  Pi). So, equation (21b) indicates that the non-physical element has been completely removed 
from the present formulation. 

Substitution of equation (8) into equation (79) shows that the PCS is a flat space (total- 
curvature-free). Substitution of metrics in equation (7) into equation (57a) show that the metrics 
are equivalent to the second cosine formula of the plain trigonometry. These facts indicate that 
the RGPC is a natural extension of Euclidean geometry. 

3. GOVERNING EQUATIONS 

In this section we define the governing equations of flow and free surface in the form of the 
PCBFC method. 
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3.1. Flow 

The flow is governed by the equation of continuity and the Navier-Stokes equation of 
incompressible fluid. These equations in the form of the PCS are obtained from those in the 
physical space by replacing the partial derivatives with the covariant derivatives of the PCS, and 
are given, respectively, as follows: 

v(i)u(i)=o, (224 
and 

au(i) 1 .  
(234 -= -&)v u(O-- g (WV (k )p  + VV(/)g(ik)V(k)U'i'+fig(ij)v(j)~l, ( i )  

P at 

where p, v and5 are the density, viscosity and the constant of external forces (gravity and external 
excitation), respectively, and the summation runs over 1. 

For the convenience of computation, we rewrite equation (22a) in the following form: 

where V and hi ( =Jgi i )  are the volume of the analytical cell and the length of the cell side, 
respectively, and there is no summation over i without parenthesis. The above equation is 
obtained from the counterpart in the curvilinear space, in which Vand hi are the Jacobian and the 
metric, respectively. In equation (22b), V&, is the cross-section of cell that faces the flow vector 
di), and Vu")/d(,, denotes the flux of flow. In the same manner we also rewrite equation (23a) in the 
following form: 

where the diffusion term has been rewritten and $! is a stress tensor defined as follows: 

(24) p)- ( i )  - V ( i ) U ( j ) .  

3.2. Free surface 

The movement of the free surface is governed by the pressure condition and the kinematic 
condition. In the present method the free surface is tracked by a certain 'leaf', a plane that consists 
of co-ordinate axes of the PCS (see Section A.7). 

The pressure condition is fulfilled simply by putting p = O  at the surface leaf of the PCS, and no 
interpolation as required in the indirect tracking method is necessary. Surface tension is not 
incorporated yet, and we deal only with problems with small free-surface curvatures. 

The kinematic condition is written in the physical space as follows: 

DF 
-=O, 
Dt 

where D and F are, respectively, the Lagrangian derivative and 'surface function', that is constant 
on the free surface. First, we convert equation (25a) in the form of PCS. From the expression of 
the Lagrangian derivative in the physical space, 
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we can obtain its form in the 4-spacetime of PCS as follows: 
D 
Dt 
- = U(')V(,), 

where u(') is a non-relativistic 4-velocity and u(*) is unity. So, equation (25a) has the following form 
in the 4-spacetime: 

u(')V(,)F =O. (25b) 
Equation (25b) can be expanded as follows: 

where there is no correction term for the direction change of the curved PCS co-ordinates since 
F is a scalar. 

We track the free surface with a certain ((l)-{(') leaf of the PCS. Since the {(*) and (('I axes lie 
on the free surface and F is constant there, the following equations hold: 

dF dF -- dt(l)-d5"=0 (on the free surface). 

Equation (28) simplifies equation (27) to the following form: 

which is satisfied by the following relation: 

A((3) = u(3) At .  

The above equation is fulfilled by simply imposing the equation of continuity on the surface cells. 
Free-surface positioning is quite simple and requires little computational time in the PCBFC 
method. 

3.3. Movement of the point of de3nition 

The free-surface movement causes grid movement. Velocity di) and pressure p after the grid 
movement in the direction of V are related with those before the grid movement by the Lie 
derivative in the following way: 

u(i)(a)=u(i)(b)+L,u(i)* At ,  (3 1 4  

(3 1 b) p(a)=p(b)+ LVP * At ,  
where (a) and (b) denote 'after' and 'before' the grid movement and At is a time step. 

4. NUMERICAL PROCEDURE 

We present the computational algorithm and full discrete equations in this section. These 
procedures are developed based on the works of Koshizuka et al.'o-'2 

4.1. Computational algorithm 

The developed code is named 'BELIEF' (a BFC code extended with Lie derivative for the 
analysis of incompressible_ fluid flow with free surface). The computational scheme adopted in 
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BELIEF is an extension of SMAC (simplified marker-and-cell),20 to which the step for the grid 
movement and the assessment of its impact is added. The convective scheme used in BELIEF is 
either the second-order central difference scheme or the first-order upwind difference scheme. 
Point SOR (successive over-relaxation) method is used to solve the Poisson equation. 

Staggered arrangement of variables is chosen for assuring numerical stability as well as the 
conservation of mass and energy. Flow vector is defined on the cell surface, stress tensor of i # j  is 
defined on the cell side, pressure, stress tensor of i = j ,  Jacobian, metric and connection coefficient 
ofj# k are defined at the cell centre, and connection coefficient ofj= k is defined at the grid point. 
When these quantities at another point of definition are necessary, averages of those at the nearest 
points of definition are used. 

In estimating connection coefficients, those of i #  k are estimated first by equations (8) and (16), 
and after these those of ( i = k )  by equations (21a) and (21b). By this procedure we can 
circumvent the cumbersome character of the PCS that differentials of the higher-order depend on 
the order of differentiation [equation (9)]. This is because only the connection coefficients of 

(i = k )  are susceptible to this uncommutativity, which is shown by substituting connection 
coefficients of the curvilinear space and transformation matrix from the curvilinear space to the 
PCS into equation (62). The differentials of the curvilinear space are commutative, the trans- 
formation matrix is diagonal and the second term in the parenthesis of the right-hand side of 
equation (62), which is the origin of uncommutativity, vanishes in the case of r:yk) ( i # k ) .  

4.2. Discretization techniques 

The following discretizations are given in two dimensions and only those of dl) are presented 
for simplicity, but extension to the general case is obvious. The pointer ( i , j )  denotes the cell centre 
and the pointer ( [ j )  with c = i +  1/2 denotes the cell face where uyj  is defined. The cell face ( [ j )  is 
shared by the cells of ( i , j )  and ( i +  1, j ) .  

The computational algorithm consists of three steps: the predictor step of SMAC, the corrector 
step of SMAC and the grid movement step. We present discrete equations in this order. First step 
is the derivation of the predictor of flow vectors by explicitly discretizing the four terms in the 
right-hand side of equation (23b). The predictor is defined on the cell face and the discretizations 
at ( [ j )  are presented below. 

First, the convective term of equation (23b) is expanded as follows: 

CON"' = - ( d l ) V ( l ) d l )  + U(~)V(~)U( ' ) ) .  (32) 

It has been shown that the flow vectors may show unrealistic swings by having the influence of 
centrifugal effects of the curved mesh in advance, unless the connection coefficients in the 
convective term are discretized at upwind.1°-12 In the present study, whole connection terms are 
discretized at upwind: 

and 

Equation (68) indicates that U")'s in the above equations are the flow vectors decomposed by the 
common co-ordinate system belonging to the flow vector of interest ui;. (see Figure 2). Then the (1) 
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Figure 2. Decomposition of flow vectors by the common co-ordinates (a simple case that flow vectors have only dl) 
components is drawn.) 

convective term is discretized as follows: 

where a is either 0 (central difference scheme) or 1 (upwind difference scheme) and ‘sgn’ indicates 
signature. The present discretization technique can be easily extended to another convective 
schemes. 

Second, the pressure term is expanded as follows: 
1 P R E ( ~ ) =  _ _  
P 
(dl l’v(l,P +9‘12’v(12,P), (35) 

and is discretized in the following way: 

Third, the diffusion term is expanded as follows: 

DIF“’=V(DIFl +DIF2), (37) 
where DIFl and DIF2 are written, respectively, in the following ways: 
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since A5(''=hl holds. 
Finally, the external force term is expanded as follows: 

where x and y are x 1  and x2, respectively. The first term on the right-hand side of equation (41) is 
taken as an example of discretization and is written as follows: 

where (xc, yc) is the co-ordinate of cell centre in the physical space. 
Then the predictor of the flow vector is obtained as follows: 

ii$ = uyj +(CON(') + PRE(') + DIF'') + EXT")) * At. (43) 
The second step of the algorithm is the solution of the Poisson equation of pressure. The 

pressure is defined at the cell centre and the discretization at ( i , j )  are presented below. The 
Poisson equation obtained from equation (22b) and ii of equation (43) is expressed as follows: 

where p is the increment of pressure. The above equation is expanded as follows: 

= - [ hl  a,,, (p) +h28(,) (p)]. (45) 

The right-hand side of equation (45) is discretized as follows: 

The first two terms in the parenthesis on the left-hand side equation (45) are taken as examples of 
discretization and are written, respectively, as follows: 
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Then the variables in the advanced time step are given by the following forms: 

pnew = p + p', 

u ( l ) n e w - c ( l ) - -  - (g(ll)f3(l)p' + g'1%(& 
Ar 
P 

Equation (48b) has differentials and is discretized as follows: 

The third step of the algorithm is the movement of free surface and the assessment of the impact 
of grid movement. The movement of free surface is defined at  the grid points of the surface leaf 
and is given from equation (30) as follows: 

(50) A(; (2) =(w. -u. (2) -+ (2) 
1 . j ~  i ,jjl wi+ l ,gui+  1,z)ACv 

where17 is ii pointer of the cell face of the surface cell and w is the weight of average, which is 
inversely proportional to the mesh size. By the weight, the movement of the free surface conserves 
mass, as illustrated in Figure 3. In this figure, the area of AABK is equal to the area of AKCD, 
A KDL to A, LEF, A LFM to A MGH and A MHN to A NIJ; therefore, the total area below the 
broken line is equal to that below the step drawn with a solid line. 

The Lie derivative term of equation (31a) is expanded as follows: 

u(')(a) =u(')(b)+( V(''V(l)u(l)+ V(2)V(2)u(1)- r(') ( t l )  u(l)- T&u(2))Ar. (51) 

A' B' D' F' H' 

: J  

J' 

Figure 3. Definition of a free surface: - result computation; ---- free surface 
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The initial two terms of the Lie derivative in equation (51) have covariant derivatives, and are 
discretized as follows: 

where sgn( V )  assures that these derivatives are assessed in the cell where the mesh moves in. 

4.3. Initial and boundary conditions 

No turbulence model nor wall function is incorporated yet, because the principal objective of 
the present paper is the theoretical development and the demonstration of basic performance. To 
avoid the excessive drag by walls, free-slip condition is applied to the boundaries. 

SMAC is an explicit scheme and the time step is limited by the Coulant number. Direct 
Lagrangian tracking of the free surface circumvents the reduction of time step required by the 
convergence of VOF value. The stability of free surface can reduce the time step, but a fixed time 
step of half the Coulant number never causes instability in the following examples. 

5. NUMERICAL EXAMPLES 

Although the numerical method has been developed in the general 3D form, examples given in 
this section are performed in 2D to show the basic performance of the present method. 

5.1. Surface oscillation initiated by a pressure spike 

The first example is chosen to demonstrate the computability of oscillatory free-surface motion 
initiated by external excitation. A two-dimensional rectangular vessel of width of 4.8 units is filled 
by liquid to a height of 4.0 units. The fluid has a unit density and a viscosity of 0-01. The surface 
tension is not specified. A unit gravity acceleration works downwards. A spike of cosine pressure 
pulse of unit strength in the first mode initiates the oscillation of the free surface. This bench-mark 
problem was first proposed by Harlow and Welch," who analysed the problem with the 
marker-and-cell (MAC) method. Later, this problem was analysed by Ramaswamy and 
Kawahara' with the Lagrangian FE Method using 960 elements. In the present work, the 
problem is analysed with the PCBFC method using 120 cells with the central difference scheme. 
Free-slip condition is imposed on the walls. A certain <('I axis tracks the free surface and the other 
5")  axes move in a manner proportional to the movement of the surface grids above them. <(') 

axes are fixed and parallel to the y axes. 
The computed free surfaces and flows of the initial period are shown in Figure 4, with the 

corresponding pressure contours in Figure 5. These figures show curved free surfaces formed by 
non-linear effects. Both the free surfaces and the pressure contours show close agreement with 
those obtained by Ramaswamy and Kawahara. The amplitudes of a spike (higher end) and 
a bubble (lower end) of the free surface in its initial half period are shown in Figure 6, along with 
those obtained by Harlow and WelchZ for comparison. Both the spike and the bubble show 
good agreement, but the period of oscillation is shorter by a small amount than that of Harlow 
and Welch. 
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Figure 4. Oscillation of the free surface and the inside flow initiated by a pressure spike: (a) t = 2.0; (b) t =4.0; (c) t = 6.0; 
(d) t = 8.0 

The potential energy can be assessed by summing up the potential energies of all the cells and is 
expressed as follows: 

&mI(t) = 1 { 1 /6 Ax [(Y: + Y j  + Y3Y.d - ( Y t  + Y :  + Y 1 Y2 )I 1 3 (534 

where Ax, y ,  and y z ,  and y,  and y4 are the width of cell, heights of two lower grid points of the 
cell, and those of two higher grid points of the cell, respectively, and the summation extends to all 
cells. Then the pure gain of the potential energy is obtained in the following form: 

Ep1= &ot(t) - &I(O), (53W 

Eki,=1/2~S(u2+uZ+2uu cos a), (54) 

where &,,JO) is the base potential energy when the fluid is stationary. The kinetic energy is 
estimated by the following equation: 

where S, u, u and a are the area of the cell, dl), d2), and the angle formed by {(l) and {(') axes, 
respectively. Then the total energy is defined as a sum of the potential energy and the kinetic 
energy: 

(55) EIol = E,t + Ekin. 
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Figure 5. Pressure contours corresponding to Figure 4 

0 I 2 3 4 
TIME 

Figure 6. Amplitude of a spike and a bubble (drawn on the figure of Reference 21): - computation by SMAC, 
0 computation by PCBFC, ---- prediction of linear theory 
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The above definition ignores the contribution of pressure, because the pressure is known only at  
the cell centre and the total pressure may cause relatively large numerical errors when the basic 
pressure before the initiation of oscillation is subtracted. 

Figures 7(a) and 7(b) show the history of free-surface amplitudes and that of energies for the 
initial five periods. Both the amplitudes and the energies show gradual decreases by the viscosity 
of the fluid. The decrease of amplitudes shows small fluctuation at the spike, presumably because 
of the large distortion of cells; this may be improved by a modification of the boundary conditions 
or the convective scheme. The decrease of energy shows no fluctuation. A small periodical 
oscillation of the total energy in this closed system may be attributed to the omission of pressure 
from the definition. 

5.2. Free-surface motion under forced circulation 

The second example is chosen to demonstrate the computability of free-surface motion induced 
by forced circulation. The experiment of this bench-mark was performed by Ueda et al.** for the 
basic study of free-surface motion of the coolant of a liquid-metal-cooled fast breeder reactor 

I I I I I I I I I 

-1.0 I I I I I I I 

0 10 20 30 40 

TIME 

0.8 

6 0.6 

0.4 
Ei 

(1) 

(2)  
0.2 

0.0 
0 10 20 30 40 

TIME 

Figure 7. History of amplitudes and energy corresponding to Figure 4. (a) History of amplitudes: (1 )  right end (2) left end; 
(3) centre. (b) History of energy: ( 1 )  kinetic energy; (2) potential energy; (3) total energy (pressure is not added) 
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(LMFBR). The experimental section is a rectangular tank of width of 2.0 my height of 2.0 m and 
thickness of 0.1 m. It is initially filled with water to a height of 1.7 m. The experimental section 
had an inlet at  the left end of the bottom, guide board of the injection flow along the left wall, and 
an outlet near the lower end of the right wall. Both the inlet and outlet have a width of 0.2 m. 
Water was circulated from the outlet to the inlet through a closed piping system to keep an 
average water level of the tank. The case of injection velocity 1.0 m/s is chosen for the analysis. 
The analysis is performed with 324 cells. Each cell has a size of 0-1 m by 0.1 m, except for those in 
the top two layers, that have only half the heights, to have a high resolution of flow near the free 
surface. A certain ( ( l )  axes tracks the free surface, and only the upper half of 5''' axes move with 
the free surface in a manner proportional to the movement of the free surface. r(') axes are fixed 
and parallel to the y axes. The upstream difference scheme is used and the free-slip condition is 
imposed on the walls. 

Figure 8 exhibits the computed free surface and the flow after 30 s of water injection. The flow is 
developed and the free surface shows little movement at 30 s. The centre of the free surface is 
lower than both the ends, which is formed by the difference of dynamic pressure. Figure 9 shows 
a comparison of the calculated free surface and flow vectors with the experimental observations. 
A small swell of water level that was caused by inevitable gas entrainment at the free surface was 
observed in the experiment; the computed free surface was lifted by approximately 2 cm so that 
the surface height at  700 mm from the left wall met with that of the experimental observations. 
The change of water level may have effects on the flow and the free surface in a strict sense, but as 
the lifted height is very small compared to the water level of the fluid and there is no structure near 
the free surface such as inlet or outlet that is influential on the flow pattern, it is assumed that the 
effect of the lifting is small. The agreement of the shape of the free surface is fairly good. Flow 
vectors also show fairly good agreements except for the one just above the injection port, where 
the injected water hits the surface and there is a large gradient of flow velocity. These agreements 
will be improved by a high-ordered convective scheme with low numerical viscosity. The 
computation showed no numerical instability even in the case of the maximum experimental 
injection velocity of 1.6 m/s, in which case the free surface observed in the experiment was rough, 
with uncountable bubbles of entrained air below it. 
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Figure 9. Comparison of surface heights and flow vectors of Figure 8 with the experimental observations: 
- computation; ---- experiment 

5.3. Circulation-coupled periodical sloshing 

The third example is chosen to demonstrate the computability of the complex free-surface 
motion of circulation-coupled periodical sloshing. Constantly circulated free-surface flow shown 
in Figure 8 is set under external excitations. First, a cosine pressure pulse in the first mode, just as 
used in Section 5.1, is applied on the free-surface flow of Figure 8 to find the natural period of 
sloshing. The computed period of sloshing is 1-64 s, a little longer than 1.50 s that is the period of 
pure sloshing without circulation. Elongation of the period under circulation has been experi- 
mentally observed by Hara.23 Then the free surface flow of Figure 8 is shaken horizontally by 
a sinusoidal acceleration of 0.01 G with the natural period of sloshing. 

The computed free surfaces after being shaken for four periods are shown in Figure 10. No 
numerical instability is seen at  the free surface nor at the flow. A wave separates from a spike at 
the downstream in Figure 10(a), propagates towards the upstream in Figure 10(b) and is 
absorbed timely into a spike at  the upstream in Figure lO(c). No wave is observed in Figure lO(d), 
but a hollow is seen at the centre. In Figure 10(a) the spike is at the highest but the bubble is 
a little before the lowest moment. In Figure 1O(c) the spike is at  the highest but the bubble is 
a little after the lowest moment. The wave propagation and the shift of timing between the two 
ends of the free surface have been experimentally observed by Okamoto et al.24 In spite of the 
complex movement of the free surface, the movement of the grid is minimized by the extension of 
the PCBFC method to the general non-orthogonal grids. 

Computation of the problem of the Section 5.1 for five periods takes 20 s, and those of Sections 
5.2 and 5.3 for 30 s take 30 s of CPU time with the Hitac M-682 of the Computer Center in the 
University of Tokyo. Approximately 30% of the total computation time is consumed by the 
assessment of the terms intrinsic to the PCBFC method and the grid movement. 

6. CONCLUSIONS 

The characteristics of incompressible fluid flow analysis based on physical component in the 
non-physical BFC method were clarified and the generalized formulation of this method that 
should be understood as a physical curvilinear BFC (PCBFC) method was presented based on 
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Figure 10. Free surface and the inside flow formed by circulation-coupled sloshing: (a) right end highest; (b) wave 
propagation; (c) left end highest; (d) centre fall 

the theory of Riemannian geometry. The usefulness of the governing equations of fluid flow and 
free-surface motion that were described in the form of PCBFC was validated by analysing several 
cases of free-surface flow. The formulation in this paper is very general and its applicability is not 
confined only to the analysis of free-surface motion. Research is currently under way to 
demonstrate the wider applicability of PCBFC method by developing a tool for 3D analysis with 
moving boundary. 

APPENDIX 

The basic concepts of differential geometry and the manifold theory"-" related to the main 
body of the present paper are summarized. 

A.1.  Metric 

A Riemannian metric on a space M is a tensor field g of type (0,2) (covariant tensor of level 2) 
on M subject to the conditions: 

(i) g is symmetric, i.e. g i j = g i i ,  and 
(ii) g is positive-definite, i.e. g i j x i x j > O :  

g(.. 1 j ) -  - T i  ( i ) T ( j ) g i j ,  j 
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where T is a transformation matrix defined by equation (60). Metric is a tensor that defines the 
length on M. Given the metric, a length s of a parametrized curve x = c ( t )  is defined by the 
following integral: 

s = l: ( g i j i i i J ) 1 / 2  dt, (574 

where the curve is parametrized from tO to t l  and the over dot denotes differentiation with respect 
to t: 

Euclidean space has a trivial metric 

g..=& ij i j y  (58) 

where 6 ,  is the Kronecker symbol. With the metric of equation (58), equation (57a) reduces to the 
following form: 

which is the formula that defines the length in the Euclidean space based on the Pythagoras’ 
theorem. 

A.2. Connection and covariant derivative 

Partial derivatives of a functionfwith respect to given systems of local co-ordinates on a space 
M are the coniponents 

where 5’ and 5”) are 
transformation matrix 

of a tensor field: 

the systems of the local co-ordinates and TA, are the members of 

A similar computation for the contravariant vector field ui, which satisfies 
u i =  ~i u(i)  

( i )  7 

results in 

The presence of the second term in the parentheses on the right-hand side of the above equation 
indicates that the derivative of a covariant vector field does not have a tensor character. The 
derivative of a covariant vector field may be given an invariant (co-ordinate-free) meaning by 
introducing a set of n 3  ‘connection coefficients’ r j k ,  which satisfiy the following equation 

r j k =  T ~ ) [ r ~ ~ ~ ) T ~ ” ’ T ~ k ’ + a j ( T , ’ ” ) ] ,  

as it transforms equation (61) into the following form: 
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Equation (63) means that a covariant derivative of ui  with respect to ti, Vjui, which is defined by 

transforms like a tensor field of type (1, 1). We can also represent the operator V by giving its 
action on basis vector fields (ej)=(a/a(')  as follows: 

Ve,ek = r fke i .  (65) 
Note that the connection coefficient itself is not a tensor. From equation (59), the covariant 
derivative of a function f is identical to its partial derivative, 

The Euclidean space has a trivial connection, that is, 

rjk = 0 (Euclidean space). 

A.3. Parallelism 

A vector at P and one at Q of a space M are said to be parallel if they are identified with the 
same vector at some point on M. By definition, vectors ~ ' ( t )  are parallel along a curve C(t )  if the 
covariant derivative of u'(t) vanishes in the direction of C(t),  that is, if the following equations 
holds in the direction of C(t):  

This definition is co-ordinate-independent, but may well be path-dependent. Equation (68) 
shows that the connection defines parallelism (local direction) of a space. 

A.4. Lie derivative 

The geometric operation measuring the change of geometrical objects by a given transforma- 
tion is called the 'Lie derivative'. The Lie derivative of ui with respect to the vector field Vat point 
q, Lyui  is defined as follows: 

where ui (q+E)  is ui  at the point proceeded by E along the field V from the point 4 and 4* is 
a pullback operation. For the contravariant vector ui,  equation (69) is calculated as the following: 

or, in a general space, 
Lyl(i= Vjvju' -u jVjv ' .  

The Lie derivative of a function f is given as 

. af Lyf= V'V,f= VJ-.. atJ 
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A S .  Metrical connection 

A connection compatible with a metric is called a ‘metrical connection’. Compatibility de- 
mands that the inner product of two vectors that are parallel-transported be constant: 

v k g i j  = 0. (73) 
In other words, metrical connection conserves lengths and angles under parallel transport. 

A.6. Torsion and curvature 

Geometrical structure of a space can be represented by the invariants of connection. These 
invariants are the torsion and the curvature. The former is an invariant that depends on 
connection, while the latter is independent of connection and a local invariant of a space. 

Consider a small circuit (right square) drawn parallel and a vector that is parallel-transported 
along the circuit. The circuit on a general space does not necessarily close, nor is the transported 
vector identical to the original one, suffering twist. The failure of a circuit to close is expressed by 
torsion. Torsion T is represented by an operator T ( X , Y )  that takes in two vectors X and Y, 
representing the sides of the circuit, and yields the mismatch factor. By calculation, this operation 
is obtained as follows: 

T ( X ,  Y ) = V , Y - v y x - [ X ,  Y ] ,  (74) 
where Vx Y is a covariant derivative of Y in the direction of X ,  

v x Y ’ = x j v j Y ’ ,  (75) 
and [ X ,  Y ]  is a Lie bracket, 

[ X ,  Y ] i =  X j d j (  Y i ) -  Y jd j (X i ) .  (76) 
Its components are given by the following form: 

T!  -Ti -ri J k -  Jk  k j -  (77) 
Torsion is a tensor of type (1, 2). 

The twist of a parallel-transported vector, or the path dependence of a parallel-transported 
vector is reflected on the curvature R. R is represented by an operator R ( X ,  Y ) Z  that takes in 
X and Y, representing the sides of the circuit, and Z the vector transported around the circuit, and 
yields the twist vector. Calculation shows that this operation can be written in a manifestly 
covariant form, 

R ( X ,  Y)Z=CVx, vYlz-v~x.u~z. (78) 

(79) 

Its components are given by 

RjkI = dk rj, - alri Jk + rp ik  - rz I-;(. 
Curvature is a tensor of type (1, 3). A curvature-free space supports global (absolute) direction 
defined on the space. 

A.7. Foliation 

A space (n-dimensional manifold) M is said to have a ‘k-dimensional foliation’, defined on it if it 
is ‘foliated’ into k-dimensional surfaces, i.e. if for each point of M there is one and only one smooth 
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k-dimensional subspace passing through that point in a manner depending smoothly on the point 
of the space: 

u L a = M  and L,nLB=(ZI (a#b), 

where La are the specified surfaces and are called the ‘leaves’ of the foliation. It is further required 
that in some neighbourhood of each point of M there can be introduced co-ordinates 

just the leaves of the foliation in that neighbourhood and that xl,.  . . , X‘ are local co-ordinates 
for each leaf 

x l , .  . . , x k 1  , y , . . . . , y”-‘with the properties that the level surfaces y’ = a l , .  . . , y”-k=an-k are 

La=(xi,  y’) such that yj=aj. 
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